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We obtain exact solutions of the linearized perturbation equations for the con- 
vective motions in a Boussinesq fluid contained in an infinite rectangular channel 
and heated from below. The top and bottom are assumed to be perfect heat con- 
ductors. The sides can either be conducting or insulating. We assume that the 
sidewalls are rigid, but alIow the top and bottom to be free SO that we can separate 
variables. 

We find that the preferred modes of convection closely resemble transverse 
‘finite rolls’ [as predicted by Davis (1967) for convection in a box] for channels 
with height to width ratios outside the range 0.1 to  1. Inside this range they show 
noticeable departures from roll form, We prove, however, that, except when the 
sidewalls are relaxed to infinity, ‘finite rolls’ are never exact solutions of the 
linearized equations, even though in most cases they are good approximations. 

We also find that bringing the sidewalls closer together inhibits convection and, 
generally, produces thinner cells at  the onset of convection. 

1. Introduction 
Linear theory predicts for an infinite layer of fluid with free boundaries heated 

from below, the Rayleigh number ( =  657.5) and the horizontal wave-number 
( = 2-22 in units of the inverse of the fluid depth) a t  the onset of convection, but 
it allows an infinite spectrum of cell shapes. Non-linear effects have to be included 
in the theory to explain the observed shapes. The presence of lateral boundaries 
can also lift the degeneracy of the eigenfunctions, and permit one mode to be 
preferred over the others. Koschmeider (1966) has shown that the influence of 
lateral boundaries dominates the non-linear effects in the selection of cell shape 
if the width of the apparatus is an order of magnitude larger than the height. 

Davis (1967) investigated the linear stability of a rigid, perfectly conducting, 
rectangular box of fluid heated from below. He defined ‘finite rolls’ as cells with 
two non-zero velocity components dependent on all three spatial variables, and 
found upper bounds to the critical Rayleigh number by using Galerkin’s tech- 
nique with ‘finite roll’ trial functions. Within his approximation general three- 
dimensional flows can be constructed by a linear superposition of finite rolls so 
that he was able to predict the preferred mode a t  the onset of convection. He 
found that the presence of sidewalls can resolve the cell shape degeneracy of the 
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linear thermal convection problem, and that his analysis predicted finite rolls 
with axes parallel to the shorter sides. 

In  this paper we show that the linearized solutions can never be exactly finite 
rolls unless the sidewalls are infinitely far apart, and we present exact solutions 
for convection in an infinite rectangular channel with no-slip sidewalls and free 
top and bottom. Our results show, however, that the cells which appear at the 
onset of convection resemble finite rolls very closely for channel aspect ratios 
(height to width) outside the range 0.1 to 1. Inside this range they show noticeable 
departures from roll form. 

The fact that the linearized equations have near-finite roll solutions is not 
surprising in view of Segel's (1969) results for the non-linear problem. Segel found 
non-linear finite-roll solutions at  sufficiently small aspect ratios. 

2. Formulation of the problem 
We use the following notation: x and y are the horizontal co-ordinates along 

and across the channel and z is the vertical co-ordinate. The subscript * refers 
to dimensional quantities. The channel is defined by the planes x* = 0, d, and 
y* = f b,. u*, v, and w* are the components of velocity in the x, y and x directions, 
p* is the pressure, p, is the density, 8, is the temperature measured with respect 
t o  the average temperature, g* is the acceleration due to gravity, and a,, v* and K, 

are the coefficients of volume expansion, kinematic viscosity and thermal 
conductivity. 

We assume that in the initial steady state there is no motion. The vertical 
temperature gradient, p,, is constant as it is established solely by heat conduction. 

We now introduce infinitesimal perturbations, denoted by primes, into the 
system. If they grow with time, the initial equilibrium is unstable. We assume 
that the applied temperature difference between top and bottom is small enough 
so that we can use the Boussinesq approximation (i.e. la,8,l < 1). We define 
non-dimensional variables (non-subscripted) as follows 

x,y, 2 = d*l[z*, Y*, z,l, 
t 3 K*d*Zt,, 

8' 5 -p;1a,e;, 
U', V' ,  W' 3 d* K,'[U;, V & ,  W i ] ,  

p' fl&1d~K,2p~, 

where po, is the mean density of the fluid in the channel. The linearized perturba- 
tion equations are then 

2,u' = -apl/ax, (1) 

LY~VI = -aptlay, (2) 

z l w t  = - apllax + PRO', (3) 

a ~ ~ p x + a t q a ~ + a w ~ l a ~  = 0, (4) 

_ L p Z e r - W I  = 0, ( 5 )  
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where 9, and 9, denote the differential operators (a/at - PV2) and (a/at - V2) 
respectively, P = v,/K* is the Prandtl number, and R = -g,a,p,d:/K, v* is the 
Rayleigh number. 

The conditions for free, perfectly conducting top and bottom boundaries are 

8' = w' = a d l a x  = av'jax = 0 a t  z = 0 , l .  (6) 

Since the sidewalls are rigid and perfect conductors (or perfect insulators), 
the boundary conditions in y are 

U' = v' = w' = O'(or aO'/ay) = 0 at y = fa, (7) 

V' = av'jay = 8'(or a8'/ay) = 9,8 '  = 0 at y = +a.  (8) 

where u = b,/d,. From (4) and (5) these are equivalent to  

Unfortunately, however, these boundary conditions cannot be expressed in 
terms of a single variable. 

3. The exchange of stabilities 
Sherman & Ostrach (1966) have proved that the principle of exchange of 

stabilities holds (i.e. all non-decaying disturbances are non-oscillatory in time) 
for convection in a fully enclosed geometry. Only slight modification of their 
proof is needed to show that it also holds for convection in a infinite (periodic) 
channel, so we omit discussion of it here. 

4. Proof that finite rolls are not exact solutions in linear theory 
To show that finite rolls are not exact solutions of the linearized equations, we 

first set one of the horizontal velocity components, v', identically zero in the 
perturbation equations (1)-(5) and define a stream function $ by 

ut = -a$/az, wr = a$lax. (9) 

Since ap'/ay = 0 from (2) [with or = 01, we obtain 

and 

by differentiating (1) and (3) with respect to y .  Elimination of $ from (10) and 
(1  1) yields 

Now, if the side-boundaries at  y = f u and the top and bottom are conducting 
(0' = 0 there) then 0' = 0. Hence, w' = 0 from (5). Thus, convective solutions 
with d = 0 are not exact solutions of (1)-(5) (except when u = co since in this 
case 88'/ay = 0, and 0' = 0 at the sides, does not necessarily imply that 8' = 0). 

If, on the other hand, the side-boundaries are insulating (aO'/ay = 0 at y = 5 a), 
then 8', and w' must both be independent of y from (12) and (5). However, if the 
boundaries are also rigid (w' = 0 at y = & a) ,  then w' = 0 and once again there is 
no convective solution with v' = 0 which satisfies the boundary conditions. 

a w j a y a z  = 0. (12) 
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Thus, finite rolls which are aligned perpendicular to conducting or insulating, 
rigid sidewalls do not satisfy the linearized equations exactly. Note that we have 
not made use of either the boundary conditions in the x direction or the kinematic 
conditions at  the top and bottom. The proof therefore isvalid for rigid, conducting 
boxes (as considered by Davis) as well as infinite rectangular channels. 

5. The method of solution 

ferential equation in 8’ 
By elimination of variables in (1)-(5) we obtain the single sixth-order dif- 

V29192tj’-PRVg8’ = 0. (13) 

Because we cannot formulate all of the boundary conditions in terms of O‘, we 
need the following equation which relates v’ and 8’ 

aplvyaz = (s1z2 - PR) ae‘jay. (14) 

The boundary conditions (6) allow us to separate variables by assuming that 

where (T is the growth rate of the normal mode disturbance with x wave-number k 
and vertical wave-number m ( = nrr; n = 1,2,3,  . . .). We assume henceforth that 
n = 1 since this gives the most unstable mode. 

Substitution of (15) into (13) and (14) yields 

- (a’(~’ + (TLX’[P + 11 + dP - k2PR) 8 = 0 (1 6) 

where a2 = k2 + m2. 
Now (16) has the general solution 

where the r j  are the roots of the characteristic equation of (16) and the Ci are 
arbitrary constants, unless two or more of the roots are equal. For the present we 
assume that the roots are distinct. The characteristic equation is bi-cubic with 
real coefficients so that the ri can be determined using standard formulae for the 
roots of a cubic equation. 
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After substituting for 8 from ( 18), ( 17) becomes a second-order inhomogeneous 
differential equation in 0. It has a particular integral 

where the Pj are given by the formula 

1 Prj"- [2Pa2+ (1 + P) CT] r;+ [(aa+ g 2 )  (Po?+ u) - PR] r i ,  
Prj" - Pa2 - CT (20) 

which is obtained by the method of undetermined coefficients. The comple- 
mentary function of (17) is 

p. = -- 
I m  

8 

3 = 7  
al(y) = .x CierY, (21) 

where r7,8 = 5 [a2 + (cr/P)]t. 

Thus, the general solution for 0(y) is 

Applying the boundary conditions (8) to (18) and (23) gives us eight equations 
which we write in symbolic form as follows : 

8 c q. .c  = o  ( i = 1 , 2  ,..., 8) a2 j 
j=l  

(24) 

where the qij are functions of rj  and Pj. For non-trivial solutions (i.e. the Cj not 
all zero), the determinant Iqijijl must vanish. We find the Rayleigh number at  
which disturbances become marginally stable by setting CT = 0, and locating the 
zeros of Iqijl (considered as a function of R) numerically on the computer. The 
task is made easier by the fact that lqijl is always real or purely imaginary. 

Having computed the eigenvalue, R, we can find the constants C,, C,, . . . , C, in 
terms of C, by means of Cramer's rule. We then have the solutions for 0 and 8. 
The solutions for the other variables may be found from the relationships 

wf = 9 , 0 f ,  (25) 

uf = - ( l / ik)  (adlay+ awf/az), 

p' = - (l / ik)91uf,  

which are obtained from ( 5 ) ,  (4) and (1) .  
Now consider the case where the roots, r j ,  of the characteristic equation are not 

all distinct. Since the characteristic equation is a bi-cubic, if two non-zero roots 
are equal, then two other roots are also equal. Suppose that 

r3 = r5, r4 = r,. 

Then the general solution of (16) is not (18) but 
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I n  practice we would like to  have a general solution of (16) that  applies when the 
roots are nearly equal as well as when they are exactly equal. Ince (1956) showed 
that ifri and rj are roots of the characteristic equation, then (eriu - erj")/(ri - ri) is 
a solution which tends to  yer{" as ri tends to  r j .  That is, it has the right limiting 
behaviour in the limit ri equal to  rj .  Therefore, if we have two pairs of nearly 
equal roots, (r3,  r5) and (r4, re),  we use the general solution 

and proceed with the Bame method for finding the eigenvalues and the solutions 
as before. 

The case of two roots being zero can be dealt with in a similar manner. 

6. Finite roll calculations 
We performed some calculations in which we assumed that v' = 0 and solved 

the particular set of equations (l), (3), (4) and (5) (i.e. we did not take the 
y equation of motion into account). The differences between these results and the 
actual results should be a measure of the closeness of the exact solutions to  finite 
rolls. 

I n  this case we obtain a fourth-order differential equation in B', namely 

, L P ~  T~ v y  - Rme'/aX2 = 0, (30) 

where V: = P/ax2+ a2/az2. The side boundary conditions (8) reduce to  

} (31) 
8' = Y 2 8 '  = 0 a t  y = f a for perfect conductors, 

ae'jay = g 2 0 '  = 0 at y = 5 a for perfect insulators. 

For insulating sides we solved this boundary-value problem by assuming the 
form for 8' given in (15), and using the method described in Q 5. For conducting 
sides the solution for 8' has the simple form 

cos (qnyl2a) for q = 1,3 ,5 ,  .. ., 
sin (qnyl2a) for q = 2 ,4 ,6 ,  ..., 

8' N egt eikx sin mz 

where m = n for the lowest mode in the vertical. By substituting (32) into (30) 
and putting = 0 we obtain 

at marginal stability. The critical wave-number (i.e. that  value of k for which 
R,=, is a minimum) is given by 

kc = ~([gn4+(2n4/a2)]"n2)6. (34) 
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7. The results 
Figures 1 and 2,  for conducting and insulating sidewalls respectively, show the 

Rayleigh numbers a t  which the two lowest modes become unstable as a function 
of k for different aspect ratios. The role of the lateral boundaries in lifting the 
degeneracy of the eigenfimctions is apparent from the observation that the 
curves for the two modes get further apart as the walls come closer together. An 
examination of the eigenfunctions shows that the mode which has the lower 
minimum is symmetric with regions of maximum updraft and downdraft in the 
centre of the channel. The other mode is antisymmetric. Except for Ic 5 1 the 
symmetric mode is the more unstable of the two. 

2. 
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FIGURE 1. The Rayleigh numbers a t  which the two lowest modes are marginally stable as 
functions of wave-number at  different aspect ratios for perfectly conducting sidewalls. 

FIGURE 2. The same as figure 1 but for perfectly insulating sidewalls. 

Figures 3 and 4 give the critical Rayleigh number and critical wave-number 
plotted against aspect ratio for conducting sides (labelled I) and for insulating 
sides (11). The solid lines represent exact results; the dotted ones the results of 
the finite roll calculations described in 0 6. During our discussion of these figures 
we shall refer to figures 5-8 which are horizontal plan forms of the cells a t  the 
onset of convection for channels with conducting and insulating sidewalls, and 
aspect ratios of 0.5 and 2.0. 

The higher critical Rayleigh number in the conducting case (see figure 3) is a 
manifestation of heat loss through the sides. The critical Rayleigh number 
increases with A because as the sidewalls are brought closer together the crosa- 
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channel gradients of velocity and temperature increase, and hence the dissipation 
is amplified. 

Notice that the finite roll calculations give values of R, which are always too 
high, The errors are worst at moderately small aspect ratios (0.1 < A < 1.0). 
At these aspect ratios the convection departs quite markedly from roll form 
(see figures 5 and 7) because the establishment of a cross-channel component of 

1 0 4  F 
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5 x  

5 ~ 1 0 ~ 2  

A +  
FIQURE 3 

0 0.5 1 -0 1 -5 2.0 

4'0r 

A +  

FIGURE 4 

FIGURE 3. Critical Rayleigh number wersus aspect ratio for conducting sidewalls (I) and 
insulating sidewalls (11). Solid lines represent the exact results; the dashed lines tho results of 
the finite roll calculations. 

FIGURE 4. Critical wave-number versus aspect ratio. The notation is the same as in the 
previous figure. 

velocity enables more fluid to flow into the regions of maximum updraft and 
downdraft which are situated midway between the sidewalls. The cells thus 
become more efficient, i.e. most fluid particles have shorter cycle times, and more 
able to combat the increased dissipation. At large aspect ratios, the cells bear 
closer resemblance to finite rolls (see figures 6 and 8) because with the enhance- 
ment of the side boundary layers the fastest rising (sinking) fluid particles prefer 
to travel in the centre of the channel where the viscous forces are weakest when 
they reach the top (bottom). 

Finite rolls are also better approximations to the exact solutions when the 
walls are insulators rather than conductors (compare figures 5 and 7 or 6 and 8). 
We can attribute this result to the fact that in the conducting case, where 0' has 
to vanish at  the sides, there are stronger cross-channel temperature gradients to 
drive circulations in y, z planes than in the insulating case. 

Figure 4 shows that as the sidewalls are moved in from infinity, the cells widen 
slightly at first (for 0 < A 5 0.25) before narrowing (for A 2 0.25). This widening 
is not a feature of the finite roll calculations so that it must be due in some way to 
advection across the channel. For A 2 0.25, kc increases with A so that th.e cells 
can become more efficient in order to sustain themselves against rapidly increasing 



Thermal convection in an infinite channel 7 03 

dissipation. [Note that increasing k also further increases the dissipation. How- 
ever, this extra dissipation is presumably outweighed here by the gain in 
efficiency.] 

The critical wave-number is generally smaller for insulating sidewalls than for 
conducting ones because in the insulating case the cells do not have to increase 
their efficiency as much since there is no heat lost through the sides. 

FIGURE 5 FIGURE 6 

FIGURE 5. Horizontal plan form of the cells at the onset of convection for conducting 
sidewalls and A = 0.5. Abscissa., x; ordinate, y. From top to bottom: horizontal velocity 
vectors, isopleths of vertical velocity, isotherms, and isobars for the top half of the channel. 

FIGURE 6. Horizontal plan form of the cells at the onset of convection for conducting side- 
walls and A = 2.0. 

8. Conclusions 
We have shown that although finite rolls aligned perpendicular to rigid side- 

walls are not exact solutions of the linearized Boussinesq equations, they closely 
approximate the preferred modes of convection in infinite channels through a 
large range of aspect ratio. These results suggest that the upper bounds to the 
critical Rayleigh number given by Davis (1967) for convection in a box should be 
accurate in most cases. 

We plan to extend this work by including the effects of Coriolis forces due to 
rotation about a vertical axis. We expect to find that the interaction between the 



7 04 R. P. Davies-Jones 

convective motions and the rotation will sustain a differential rotation through 
the actions of non-zero Reynolds and thermal stresses. 

I / 

FIGURE 7 FIGURE 8 

FIGURE 7. Horizontal plan form of the cells a t  the onset of convection for insulating side- 
walls and A = 0.5. 
FIGURE 8. Horizontal plan form of the cells a t  the onset of convection for insulating side- 
walls and A = 2.0. 
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